
MA 3046 - Matrix Analysis Problem Set 7

1. Normally, we call x an eigenvector of A if Ax = λx, i.e. the “input” and “output”
are parallel when we multiply A on the right by a (column) vector.

However, it is also possible to define left-hand eigenvectors, i.e.the (column) vector y
is a left-hand eigenvector of A if, for some scalar η,

yT A = η yT

Show that:
(i) y is a left-hand eigenvector of A if and only if y is also a “normal” (i.e. right-hand)

eigenvector of AT .

solution:

yT A = η yT ⇐⇒ ¡
yT A

¢T
=
¡
η yT

¢T ⇐⇒ AT y = η y

But, by definition, the last condition means precisely that y is an eigenvector
of AT , with η as the associated eigenvalue.

(ii) The eigenvalues of A and AT are identical. (Hint: Use properties of the determinant
on the respective characteristic polynomials.)

solution:

AT y = η y ⇐⇒ det
¡
AT − ηI

¢
= 0

But we know, from the properties of determinants, that det (B) = det
¡
BT
¢
.

Therefore:

det
¡
AT − ηI

¢
= det

³¡
AT − ηI

¢T´
= det

³¡
AT
¢T − η (I)T

´
≡ det (A − ηI)

Hence both A and AT have the same characteristic polynomial. But, since the
roots of a polynomial are unique, this means A and AT must have the same
eigenvalues.
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(iii) What, if any, relationship exists between the eigenvectors of A and those of AT when
all of the eigenvalues are distinct.

solution:

We know that if all the eigenvalues of A are distinct, then A will have a full set
of linearly independent eigenvectors and be diagonalizable, i.e. there will be a
matrix V such that

V−1AV = D

where D is a diagonal matrix, and the columns of V are the eigenvectors of A.
But this implies¡

V−1AV
¢T
= DT ⇐⇒ VT AT

¡
V−1

¢T
= D

(since D is diagonal, it’s trivially symmetric.) But¡
V−1

¢T
=
¡
VT

¢−1
(simply transpose AA−1 = A−1A = I). Therefore:

VT AT
¡
V−1

¢T
= D ⇐⇒ AT

¡
V−1

¢T
= D

¡
VT

¢−1
= D

¡
V−1

¢T
Which immediately implies that the columns of

¡
V−1

¢T
are the eigenvectors

of AT . Therefore, y is an eigenvector of AT , if and only if yT is a row of V−1,
where the columns of V are the eigenvectors of A.

But V−1V = I, i.e. the rows of V−1 are orthogonal to every column
of V except the one with the same index. (Specifically, the first row of V−1 is
orthogonal to every column of V but the first, the second row of V−1 is orthog-
onal to every column ofV but the second, etc.) Therefore, y(i) is an eigenvector
of AT if and only if y(i) lies in the orthogonal complement of v(i), where v(i)

is the eigenvector of A associated with same eigenvalue. So, if needed, y(i)

can be found directly from v(i) by several different methods, e.g. least squares,
Gram-Schmidt, orQR factorization ofV with the column corresponding to v(i)

removed.
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2. Consider the matrix

A =

 4 −7 −5
−2 3 −1
2 −5 −1


Conduct five iterations of the basic power method, starting with x(0) = [ 1 1 1 ]T ,
with normalization (using the infinity norm) after each step, and estimate the dominant
eigenvalue and is associated eigenvector. Compare your answer with the exact (MATLAB)
answer.

solution:

By definition, the basic power method satisfies
(i) x(k+1) = Ax(k)

(ii) x(k+1) =
x(k+1)

kx(k+1) k∞
So, starting with

x(0) =

 11
1


proceed

x(1) = Ax(0) =

 4 −7 −5
−2 3 −1
2 −5 −1

 11
1

 =
−80
−4


Normalize

x(1) =
1

8

−80
−4

 =
 −10
−12


Repeat

x(2) = Ax(1) =

 4 −7 −5
−2 3 −1
2 −5 −1

 −10
−12

 =
−1.52.5
−1.5


and normalize

x(2) =
1

2.5

−1.52.5
−1.5

 =
−0.61.0
−0.6


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solution:

Continuing yields:

x(3) =

−6.44.8
−5.6

 , normalize to x(3) =

−1.0000.750
−0.875


and

x(4) =

−4.8755.125
−4.875

 , normalize to x(4) =

−0.95121.0000
−0.9512


(to four decimal places) and finally

x(5) =

−6.04885.8537
−5.9512

 , normalize to x(5) =

−1.00000.9677
−0.9839



Observe the values of the x(i) appear to be “settling down“ (to and eigen-
vector). At this point the approximate eigenvector is the normalized value
of x(5), and therfore

Av =

 4 −7 −5
−2 3 −1
2 −5 −1

−1.00000.9677
−0.9839

 =
−5.85485.8871
−5.8548

 .= λv
.
= 5.9605

−1.00000.9677
−0.9839


where we obtained the value 5.9605 as the least squares solution of

vλ = Av =⇒ λ =
vTAv

vTv

and so

λ1
.
= 5.9605 , and v(1)

.
=

−1.00000.9677
−0.9839


Note the exact (MATLAB) values are: λ1 = 6 , and v(1) =

−11
−1

.
(The other two eigenvalues are λ2 = 2 and λ3 = −2.
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3. Consider the matrix

A =

 7 21 −39
6 28 −42
3 15 −23


Conduct five iterations of the basic power method, starting with x(0) = [ 1 1 1 ]T ,
with normalization (using the infinity norm) after each step, and estimate the dominant
eigenvalue and is associated eigenvector. Compare your answer with the exact (MATLAB)
answer.

solution:

By definition, the basic power method satisfies
(i) x(k+1) = Ax(k)

(ii) x(k+1) =
x(k+1)

kx(k+1) k∞
So, starting with

x(0) =

 11
1


proceed

x(1) = Ax(0) =

 7 21 −39
6 28 −42
3 15 −23

 11
1

 =
−11−8
−5


Normalize

x(1) =
1

11

−11−8
−5

 =
−1.0000−0.7273
−0.4545


(to four displayed MATLAB decimal places.) Repeat

x(2) = Ax(1) =

 7 21 −39
6 28 −42
3 15 −23

−1.0000−0.7273
−0.4545

 =
−4.5455−7.2727
−3.4545


and normalize

x(2) =
1

7.2727

−4.5455−7.2727
−3.4545

 =
−0.6250−1.0000
−0.4750


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solution:

Continuing yields:

x(3) =

 −6.8500−11.8000
−5.9500

 , normalize to x(3) =

−0.5805−1.0000
−0.5042


and

x(4) =

 −5.3983−10.3051
−5.1441

 , normalize to x(4) =

−0.5238−1.0000
−0.4992


(to four decimal places) and finally

x(5) =

 −5.1990−10.1776
−5.0905

 , normalize to x(5) =

−0.5108−1.0000
−0.5002



Observe the values of the x(i) appear to be “settling down“ (to and eigen-
vector). At this point the approximate eigenvector is the normalized value
of x(5), and therfore

Av =

 7 21 −39
6 28 −42
3 15 −23

−0.5108−1.0000
−0.5002

 =
 −5.0695−10.0582
−5.0288


.
= λv

.
= 10.0344

−0.5108−1.0000
−0.5002


where we obtained the value 10.0344 as the least squares solution of

vλ = Av =⇒ λ =
vTAv

vTv

and so

λ1
.
= 10.0344 , and v(1)

.
=

−0.5108−1.0000
−0.5002


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solution:

Note the exact (MATLAB) values are: λ1 = 10 , and v(1) =

−
1
2

−1
−12

.
(The other two eigenvalues are λ2 = 4 and λ3 = −2.
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4. Consider the matrix

A =

 10 −7 −12
2 1 −12
11 −11 −3


Conduct three iterations of the basic power method, starting with x(0) = [ 1 1 1 ]T , with
normalization (using the infinity norm) after each step, and show that, in this instance,
the method apparently will never converge. Using the exact eigenvalues and associated
eigenvectors of A as computed by MATLAB, explain what went “wrong” here.

solution:

By definition, the basic power method satisfies
(i) x(k+1) = Ax(k)

(ii) x(k+1) =
x(k+1)

kx(k+1) k∞
So, starting with

x(0) =

 11
1


proceed

x(1) = Ax(0) =

 10 −7 −12
2 1 −12
11 −11 −3

 11
1

 =
−9−9
−3


Normalize

x(1) =
1

9

−9−9
−3

 =
 −1−1
−13


(to four displayed MATLAB decimal places.) Repeat

x(2) = Ax(1) =

 10 −7 −12
2 1 −12
11 −11 −3


 −1−1
−13

 =
 11
1


and observe that normalization isn’t required here.
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solution:

Continuing yields:

x(3) =

−9−9
−3

 , normalize to x(3) =

 −1−1
−13


and by now it should be obvious that all future iterates will simply alternate
back and forth between  −1−1

−13

 and

 11
1


In other words, in this case, the power method iterates will never converge.

To understand why, observe that, according to MATLAB, the exact eigenvalues
and associated eigenvectors are: Note the exact (MATLAB) values are:

λ1 = 8 , λ2 = 3 and λ3 = −3
and

v(1) =

 1
2
−1

 , v(2) =

 11
0

 , and v(3) =

 22
1


(Note we’ve “cleaned” up the eigenvectors provided by MATLAB a bit!) In
this case, if we expand x(0) in terms of the eigenvectors, we find:

x(0) = α1v
(1) + α2v

(2) + α3v
(3)

=⇒
 11
1

 = α1

 1
2
−1

+ α2

 11
0

+ α3

 22
1


=⇒ α1 = 0 , α2 = −1 and α3 = 1

In other words, x(0) started out with no component in the direction of v(1).
Therefore, we expect the iteration to produce

x(k) = Akx(0) = α2λ
k
2v

(2) + α3λ
k
3v

(3) ≡ α2(3)
kv(2) + α3(−3)kv(3)
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solution:

or equivalently

x(k) = (3)k
n
α2v

(2) + α3(−1)kv(3)
o

In other words, x(k) will continually oscillate between the direction of

α2v
(2) + α3v

(3) and α2v
(2) − α3v(3)

(In a “real” application, the effects of finite-precision errors would likely even-
tually introduce a “small” component in the direction of V(1), and this would
be sufficient, eventually, to cause convergence to the correct eigenvector. In
fact, if we start the MATLAB calculations here with

x(0) = zeros(3,1) + 100 eps rand(3,1)

then we obtain convergence in forty to fifty iterations.)
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